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Network formulation

Let A ∈ [0, 1]n×m×a be the set of real images with dimensions n by m and a channels. Furthermore, B ∈
[0, 1]n×m×b be the set of synthetic images of same size and b channels. The generators GB : A → B and

GA : B → A transform a real image into a synthetic images and a synthetic image to a real one, respectively.

The discriminator DX : X → [0, 1] where X ∈ {A,B} predicts, whether a data sample is either a genuine image

(real or synthetic) or a generated image. A genuine image was encoded with a 0, while a generated image is

encoded with a 1. The histogram discriminator HX : Rh → [0, 1] functions as DX with the exception that it

will get a binned inverse cumulative distribution function (iCDFh(·)) of the input image with h bins.

In the following, the network architecture is described. Let cUsV-W be a U × U convolution layer with stride V

and W filters. Futhermore, IN denotes an InstanceNorm layer, ReLU a rectified linear unit activation, leaky ReLU

a leaky rectified linear unit activation with (alpha = 0.2), and tanh a hyperbolic tangent activation function.

The shorthand for a fractional-strided U × U convolution layer with stride 1/V and W filters is ctUsV-W. A

residual addition is signified with r<. The layer to which the network is added is marked with the most recent

> before the residual layer. A fully connected layer with W nodes and a dropout probability of 50% is defined as

dW. Finally, pU describes a 2 dimensional reflective padding step.

Generator The generators are built in a similar fashion as the generator with 6 residual layers proposed by

Zhu et al. [1]. Below, W describes the number of channels in the output domain (a or b).

p3 c7s1-64, IN, ReLU

p1, c3s2-128, IN, ReLU

p1, c3s2-256, IN, ReLU

>, p1, c3s1-256, IN, ReLU, p1, c3s1-256, IN, r< [repeat 6 times]

ct3s2-128, IN, ReLU

ct3s2-64, IN, ReLU

c7s3-W, IN, tanh/2 + 0.5

Discriminator Both discriminators are identical to the discriminator introduced in Zhu et al. [1]. The

discriminator has a receptive field of size 70 × 70.

p1, c4s2-64, leaky ReLU

p1, c4s2-128, IN, leaky ReLU
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p1, c4s2-256, IN, leaky ReLU

p1, c4s1-512, IN, leaky ReLU

p1, c4s1-1

Histogram discriminator The histogram discriminator gets an inverse cumulative distribution function

(iCDF) as input. The iCDF can be transformed into a histogram. However, it is easier to create, since it is

equivalent to the intensity-sorted pixel values of an image. To reduce the complexity of the network, the iCDF

is binned into h by taking the mean of all the elements belonging to the bin. Since h was set to n, the number

of averaged values for each bin was m. If an image had multiple channels, each channel was binned separately

from each other. Afterwards, the channel histograms were concatenated and fed into the network.

The histogram discriminator is a multi-layer perceptron with two hidden layers.

d64, tanh, d64, tanh, d1 + 0.5

Losses

The total loss of the network can be described by:

Ltotal = Ldis A + Ldis B + λc · Lcyc, (S1)

where λc is an arbitrary value weighting the cycle-consistent loss against the adversarial losses. The terms on

the right side are defined below. The optimizer is trying to solve:

G∗A,G∗B ,D∗A,D∗B ,H∗A,H∗B = argmin
G∗
A,G∗

B

argmax
D∗

A,D∗
B

argmax
H∗

A,H∗
B

Ltotal (S2)

The network is implemented with two optimizers. The first one trains the four discriminators by maximizing

equation (S2), while the second one trains the two generators by minimizing equation (S2).

Adversarial loss The adversarial loss used in this work is the same as the usual least-square loss for GANs

with the addition of the loss function given by the histogram discriminator. The optimizer for the discriminators

tries to maximize the adversarial losses. In the equation below, X is either A or B.

Ldis X = Ex∼pdata

[
(1−DX (x))2

]
+ Ey∼pdata

[
(DX (GX (y)))2

]
+ λh ·

(
Ex∼pdata

[
(1−HX (x))2

]
+ Ey∼pdata

[
(HX (GX (y)))2

]) (S3)

Cycle-consistent loss The cycle-consistent loss encourages the generators to approximate a bijective map-

ping between the relevant subsets of A and B. The cycle-consistent loss consists of a loss term for the cycle

A→ B → A and a term for the cycle B → A→ B.

Lcyc = Ex∼pdata

[
(x− GA(GB(x)))2

]
+ Ey∼pdata

[
(y − GB(GA(y)))2

]
(S4)

Generator loss The two generator losses are used to train the generators. The generator optimizer is trying

to minimize these losses. The cycle-consistent loss is divided by a factor of two in order to make the overall loss

identical to the one given in equation (S1).

Lgen X = Ey∼pdata

[
(DX (GX (y)))2

]
+ λh · Ey∼pdata

[
(HX (GX (y)))2

]
+
λc
2
· Lcyc (S5)

Training

Unless otherwise stated, each dataset has been trained with a λc of 10 and a λh of 0. An optimizer (β1 = 0.5,

β2 = 0.999, ε = 10−8) has been used to MinMax equation (S2). Each network has been trained for 200 epochs.

The learning rate was fixed to 0.0002 for the first 100 epochs. Afterwards it linearly decayed to 0 for the

next 100 epochs. As in Zhu et al. [1], all convolutional kernels were initialized from a Gaussian distribution

(mean: 0, std: 0.02). In order to achieve a more consistent cyclic behaviour, noise was added to the input of

all discriminators. The noise added was Gaussian noise with standard deviation of 0.9n where n is the current
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epoch. In order to follow the implementation of Zhu et al. as close as possible, a buffer was introduced that

stored 50 previously generated images on which the discriminator were trained as described by Shrivastava et

al. [2]. The batchsize was fixed to 4. The buffer was filled with all 4 images until it was full. Afterwards, four

random elements in the buffer were replaced with new ones. Following the suggestion of Shrivastava et al., the

discriminators were trained with 2 images from the buffer and 2 current ones. The networks have been trained

on a GeForce RTX 2080 Ti (Nvidia Corporation, USA). Training a network for one iteration took about 1 sec.

Therefore, training a network on the C. elegans for 200 epochs took roughly 10 hours. For the neuronal bright

field images, the biggest dataset discussed here, the total training took about a day.

VGG-Cells

With the synthetic dataset displayed on Fig.2b), we localize cells to within 2 pixels on average from their ground

truth position. The distribution of distance between a detected cell and its closest ground-truth position is

displayed on Fig.S1.

Figure S1: Distance-vectors between detected VGG Cells centers and the ground truth labels in x-y pixel shift

units, displaying 34’000 detected cells. Each point displays the x-y shift between a generator cell’s position and

the nearest ground-truth label. The average error on the location of the cell-center is 1.25 pixels. These numbers

are fractional because the maximum likelihood estimation of the centers of the Gaussians in the transformed

dataset yield real and not integer numbers.

On average we count 95.4% of the cells. Because we operate in an unsupervised fashion, we do not directly

minimize the counting error during training. We notice however that some cells would not be counted either

by a human, as shown in Fig.S2. Indeed, the ground-truth labels used to create the VGG Cells dataset in some

cases can be so close to one another that the generated cell ensemble they represent only looks like a single

cell. If a human cannot distinguish these cells, our cycleGAN approach cannot either. However, the number of

cell-centers that are within a few pixels of one another shows as expected a pure N2 dependency, where N is

the number of cells-centers in an image (see Fig.S2). This means that a supervised network can easily minimize

its count error by adding a bias of aN2 to its count N , in order to reduce the counting gap. If we take our raw

cycleGAN cell count based on the results of Fig.2b, that we define as c, for each image and let c + αc2 be a

modified count and minimize the error against the true counts, we bring down our mean average error to 4 cells

per image.

Color-coding neuron location

The color of each neuron in the synthetic images of the color-coded neuron dataset only depends on the center

location of each neuron. Let Cp ∈ {0, 1}n×m be one, if the pixel describes the center of a neuron in the pth

synthetic image and zero otherwise. Furthermore, let K ∈ R101×101×3 be a kernel used for determining the
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Figure S2: Issues with VGG cells dataset: Top: the green dots are the ground-truth positions of the cells

of the VGG dataset. The red dots are the cell-center locations detected by our cycleGAN method displayed

in Fig.2b. The inset shows that in some cases even a human could not count the cells correctly based on the

ground-truth positions. This is particularly evident in the top part of the inset. Bottom: We distributed N

cells-centers randomly in 256×256 pixel space, and counting how many are within m (here 5) pixels of each

other and repeated it a 1000 times. The blue curve shows the mean number of such cells, and the red spread

is the standard deviation of the 1000 repetitions. The number of such cells follows an N2 relation. This means

that when a supervised network minimizes the error count, although it may inherently count the same cells as

our cycleGAN, it has the ability to easily correct for the error by adding a bias of αx2, where x is what the

network would truly count.

colors. The neuron in the pth image with location (u, v) is getting an rgb color vector of

tanh
(

[Cp(·, ·) ∗K(·, ·, k)] (u, v)
)

+ 1

2
, (S6)
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where k ∈ {red, green,blue} describes the channel. The kernel K is shown in Figure (S3) and can be fully

described by the matrix {K}i,j :
K = [KT; 1−K; K] (S7)

with

Ki,j = f(i) · g(j), i, j ∈ {1, 2, . . . , 101}, (S8)

where the functions f(·) and g(·) are defined as

f(i) =

max

{
min

{
3.75
i , 3

}
,−3

}
if i 6= 50

0 if i = 50

(S9)

and

g(j) =

min
{

3.75
|j| , 3

}
if j 6= 50

3 if j = 50.
(S10)

Figure S3: The kernel K used to determine the color of each neuron in the synthetic dataset. The color only

depends on the relative location of a neuron with respect to other neurons.

C. elegans dataset

The number of worms put in the synthetic dataset influences the quality of the cycles. In this case, the synthetic

dataset does not have enough worms.

Primary cortical neurons dataset : Example of a backchannel

We illustrate here the issue that can arise without histogram loss in Fig.S5. On the top row, Fig.S5a shows

the raw image cycle. Because of the residual network in the generator, part of the image is compressed into

the generated image, but not clearly visible at all. However it is perfectly retrieved in the cycle. We call this a

backchannel, as the original image is somehow retrieved through the cycle, without having a proper generated

image.

This backchannel is much more difficult for the network to achieve in the synthetic cycle shown in Fig.S5b. We

hypothesize that this is due to the fact that there is only 1 channel available in the generated (raw domain)

image.

The effect of the histogram loss is more thoroughly discussed in Fig.S7.

Importance of variation in synthetic images

We display the importance of having enough variation in the synthetic dataset to generate realistic raw images

in Fig.S6. CNNs and therefore GANs are deterministic functions: for the same input they always generate the

same output. Real objects like neurons on a glass slide come in different kinds of shapes, size, and brightness.
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Figure S4: An example synthetic dataset with approximately half the number of worms as in the raw dataset.

Especially in raw images with a lot of worms, some worms are removed by the generator (bottom left). The

opposite effect occurs in the generator that creates raw images (bottom right), where worms are created out of

the background and the image boundary.

Figure S5: The figure shows backchannel. For the raw image cycle (a), a raw image is mapped to a generated

synthetic image without any clear relationship. However, the cycled image is a close match to the original

image. At the same time, the synthetic image cycle (b) appears to function as desired.

Therefore, the synthetic ellipses that should represent them in the synthetic data should bear similar amounts

of variation. Otherwise, the complexity of real neurons will not be generated as visible on the left side of Fig.S6.

On the other hand, by varying slightly the shape, the intensity profile and the background noise, we can create

much more realistic pictures. Although we are only interested in the synthetic-looking generated pictures for
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the analysis, since those are the transformed raw images, it is very important to have a good cycle both in the

raw and the synthetic cycle to have a good mapping between synthetic and raw data.

Figure S6: The effect that the diversity of a dataset can have on the generated images. The brightfield neuronal

images were trained with a cycleGAN using two different synthetic datasets. When the diversity of the dataset

was low (left side), repetitive patterns occur in the generated images (see circled data). When the complexity

of the synthetic dataset is higher (right side), the alive neurons can exhibit a wider range of possible shapes.

Both networks have been trained for 100 epochs.

Importance of histogram loss

On Fig.S7 we compare the generated images with and without histogram loss. One can see that quite often,

the synthetic-looking generated pictures without histogramm loss (second row of green shaded panel on Fig.S7)

are often not good. This goes back to the backchannels discussed in Fig.S5.

Mean absolute and relative error

The mean absolute and relative error of the neuronal counts is given in Table (S2) and (2) for the bright-field

cortical neurons, respectively. The mean absolute error is defined as

Errorabs =
1

|Ω|
∑
i∈Ω

|predi − gti|, (S11)

where Ω is the set of all datapoints, |Ω| the number of elements in Ω, predi the number of predicted neurons

for the ith datapoint, and gti the corresponding groundtruth. In a similar fashion, the mean relative error is

defined as

Errorabs =
1

|Ω|
∑
i∈Ω

1− min{predi,gti}
max{predi,gti}

if max{predi, gti} 6= 0

0 if max{predi, gti} = 0.
(S12)
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Figure S7: Comparison between having a histogram discriminator versus not having it. The total loss, as defined

in Equation S1, is plotted for the first 100 epoch of training in the case where the histogram discriminator is

not used (continuous green) and when it is (dashed red line). For better comparison of the two cases, the latter

has also been plotted after removing the contributing terms of the histogram discriminator from the total loss

(continuous red). Above and below the losses, example generated images are shown for different times during

the training when not using a histogram discriminator and when using it, respectively. The authors believe

that there are two reasons for the lower total loss when not using a histogram even though the quality of the

created images is qualitatively worse. First, the total loss with histogram discriminator is minimized by the

network (dashed red) instead of the total loss not considering the histogram losses (continuous red). Second, the

lower quality of the generated images helps the discriminators to make better predictions. The corresponding

improvement for the loss is bigger than the cost associated with a worse cycle reconstruction.
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Supplementary Tables

Expert 1 Expert 2 Expert 3

Average dead count 33.41 34.39 35.86

Average alive count 11.68 11.26 11.76

Average total count 45.10 45.65 47.62

Table S1: Average number of neurons per image: The average number of dead, alive, and total neurons

as counted by three different experts. While the average alive count is quite consistent for each expert, the

average number of dead cells counted can be off by as much as 7%.

Mean absolute error
Dead count Alive count

Expert 1 Expert 2 Expert 3 Expert 1 Expert 2 Expert 3

Average count 33.4 34.4 35.9 11.7 11.3 11.8

Std in count 19.5 19.9 21.2 8.4 8.1 8.3

Expert 1 - 1.9 ± 2.1 2.7 ± 2.9 - 1.4 ± 1.9 1.2 ± 1.5

Expert 2 1.9 ± 2.1 - 2.2 ± 2.4 1.4 ± 1.9 - 1.1 ± 1.5

Expert 3 2.7 ± 2.9 2.2 ± 2.4 - 1.2 ± 1.5 1.1 ± 1.5 -

Predicting avg 18.1 ± 7.4 18.6 ± 7.1 20.1 ± 6.8 7.2 ± 7.4 6.8 ± 7.1 7.1 ± 6.8

Our approach 6.0 ± 6.2 6.6 ± 6.9 7.9 ± 7.6 4.3 ± 6.2 4.5 ± 3.9 4.4 ± 3.7

Count-ception 5.1 ± 6.4 5.6 ± 5.7 4.7 ± 5.3 4.4 ± 4.5 3.4 ± 3.1 5.8 ± 4.7

Table S2: Average number of neurons per image: The average number of dead, alive, and total neurons

as counted by three different experts. While the average alive count is quite consistent for each expert, the

average number of dead cells counted can be off by as much as 7%.

Post-processing

VGG Dataset

Counting by area: the raw-to-synthetic generated images are the color-labeled versions of the raw images.

The images are in a shape of [276,276,3] floats between 0 and 1, where the last 3 channels are the colors.

Because the last (blue) channel contains the noise, to convert the colors into numbers, we apply the following

transformation to image Im

Im[:, :, 0] < 0.2 & Im[:, :, 1] > 0.2]→ 1 (S13)

Im[:, :, 0] > 0.2 & Im[:, :, 1] < 0.2]→ 2 (S14)

Im[:, :, 0] > 0.2 & Im[:, :, 1] > 0.2]→ 3 (S15)

signifying that we map green regions to 1 (no overlap), red regions to 2 (two cells overlap) and the white

regions to 3 (more than 2 overlaps). The other pixels are mapped onto 0. The resulting image, Imt, is now a

[276,276] array of integers between 0 (background) and 3. The resulting transformed image is then summed up

and divided by the average cell radius r (5.45 pixels) in the synthetic data. Therefore,

Count =

276∑
i,j=1

Imt[i, j]

πr2
(S16)

Counting by position

The raw-to-synthetic generated images contain the cell shapes in the red channel, and Gaussian maps

G(x, y, x0, y0) = e−(x−x0)2−(y−y0)2 with a standard deviation of 1 pixel in the blue channel at the center of each
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cell. We need to find the coordinates x0, y0 of each Gaussian map, without knowing how many there are. To

that end, the following algorithm is performed:

1. Threshold the image in the blue channel

2. Find all pixel clusters above the threshold

3. For each cluster, perform a fixed-covariance (variance of 1) Gaussian mixture model with a variable number

of Gaussians. Choose the number that minimizes the distance between the pixel values and the fit

4. Store all the found Gaussian centers

Correction factor: for each pixel cluster whose maximal pixel value was above 1, but we could not separate

into two distinct Gaussians (they are too close), we added a count of 1 to the number of found centers.

Primary cortical neurons

Counting dead neurons: For predicting the location of dead neurons, the red channel of the cycleGAN

generated images were Gaussian-smoothed with a mean of half a pixel. A dead neuron was predicted at every

peak in the smoothed image that was at least as high as 0.5 (pixels can have values between 0 and 1) and did

not have any higher peaks in a distance of 2 pixels.

Counting live neurons: The live neurons were predicted by first creating a binary map B, which was 1 for

each pixel of image I, where the sum of the three color channels of the generated images of the second neuron

cycleGAN exceeded 0.75. All other pixels were set to 0.

B[x, y] =

1 if Ired[x, y] + Igreen[x, y] + Iblue[x, y] > 0.75

0 otherwise
(S17)

From B, all connected pixel clusters were extracted. Islands were discarded, if they contained less than 10 pixels

(noise). All remaining islands correspond to one or more live neuron.

For each island, we seek to find the number of distinct colors, since this number corresponds to the number

of cells for the given island. Below calculations are done for each island separately. To simplify readability, the

below equations do not contain an index for each island. To find the number of live neurons, we first normalized

the color vector of each pixel belonging to the island under observation to one.

Coli =
1√

I2
red[xi, yi] + I2

green[xi, yi] + I2
blue[xi, yi]

 Ired[xi, yi]

Igreen[xi, yi]

Iblue[xi, yi]

 (S18)

Here, xi and yi describe the location of the ith pixel of the island under consideration. In the normalized vectors

Coli, both the green and blue channel encode the same property (see Equation S7). Therefore, the color vector

only contains two independent properties, which encode the relative location in the x direction and the relative

location in the y direction of the neuron with respect to other neurons. In the next step, these two properties

were extracted:

Wi =

[
Col

(1)
i

1−Col
(2)
i +Col

(3)
i

2

]
(S19)

We call the 2D space in which the vectors Wi lay the color space. After placing each Wi in the colorspace, we

determined for each element the distance Di to the 5th closest Wj . This distance describes how frequent the

color of the pixel is.

Di = sort
(
{
√

(xi − xj)2 + (yi − yj)2 — ∀(xj , yi) in island}
)

5
(S20)

In Fig. S8 we give a graphical explanation of what the above mentioned distance is defined.

Based on all Di, we chose a threshold δ such, that one third of them where smaller than δ and two thirds

bigger than δ. We discarded all elements Wi of an island for which Di > δ. By doing so, we could only keep Wi
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Figure S8: Distance metric of point in colorspace: The distance Di for the ith point (green) in the

colorspace is defined as the euclidean distance to the 5th closest other point (red).

that are similar in the colorspace. While this pre-segmentation of the colorspace is not necessary, it simplifies

the subsequent clustering.

Of the remaining color vectors Wi, the largest number n was found, for which all n mean locations of an

n component Gaussian mixture model (gmm) had an euclidean distance of at least 0.25. It was assumed that

an island never had more than 5 neurons (n ≤ 5). The final number of neurons per island was set to n. The

location of these neurons was chosen as the mean of the pixel location belonging to each of the gmm Gaussians.

Benchmarking

We investigated the influence that different object densities, shapes, sizes, and background noise level have on

the performance of the approach. For all tests the dead versus live neuronal dataset was used. For each test,

the synthetic datasets and training methodology were identical except for the parameter under consideration.

The choice of the neuronal dataset for benchmarking is justified by the fact that the shape and size and object

numbers here are well defined. We did not change the post processing algorithm. This is not an issue in the

case of neuronal density. However, due to the simplicity of post processing, properties like size and background

noise can affect for example the peak detection used for dead neurons.

Background noise: The background noise in the synthetic neuronal images used in this work is Gaussian

noise with a standard deviation of 0.07. In order to avoid negative pixel values, the mean was set to 0.15 and

the pixel values were clipped to lie between 0 and 1. We tested the effect of the background noise by varying

the noise standard deviation between 0.007 and 0.35. The mean was adapted appropriately. In video S1, the

generated segmentations are plotted over the 200 epochs of training for 4 example images. One can see, that the

synthetic data generators have issues if the noise level exceeds a value of 0.07. In general, it takes qualitatively

longer for the generators to find a mapping the smaller the noise is. If there is no noise, we could not get the

generator to find a mapping (data not shown).

The effect of the noise levels on the mean absolute count error per image is shown in Fig.S9. For noise levels

below 0.07, no clear trend is present. While above 0.07 there is some increase in the error, this increase is likely

introduced during the post-processing step. Since we count the dead neurons by detecting every peak in the

image that is above the value of 0.3, we inevitably will detect noise as neurons as well with a non negligible

probability for a Gaussian noise with standard deviation of 0.15 and above. Therefore, we did not plot these

prediction errors.

Neuronal density: In order to investigate the effect of the object density distribution on the quality of the

segmentation, we varied the mean number of neurons in the synthetic dataset between half and twice as much

as in the raw data. More precisely, the actual point mass functions of the dead and live image is known since

we know a priori what the viability of the neurons is and how many neurons there are per image in total.

The precise distributions are described in the results of the main text. Since the neurons have been seeded
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Figure S9: Effect of background noise on segmentation: The mean absolute count error is plotted for each

image for the dead and live neurons with respect to the background standard deviation (Gaussian noise) in red

and green, respectively. The red and green overlaid regions describe the average level of average disagreement

between the three experts.

at two different densities, the distribution is a sum of two Poisson distributions. The distributions are plotted

in white in Fig.S10 for the raw images. We investigated the effect on the mean absolute error of scaling the

expected value of the two Poisson distributions by a factor of α in the synthetic dataset with respect to the raw

distributions. The distributions investigated are also plotted in Fig.S10.

Video S2 shows the generated images for the different densities during training. While all investigated

cases find a meaningful mapping between raw and synthetic data, the network trained on images with high

synthetic densities qualitatively overestimate the number of neurons, while the networks trained with low

synthetic densities underestimate the number of neurons. This is not surprising, since we assume the prior

neuron distribution to have an effect on the posterior neuron distribution in the segmentation. Quantitatively,

the effect can be seen in Fig.S11, where the mean absolute count error is plotted with respect to α. The error

is almost flat for α values between 0.9 and 1.3. It seems that the actual object distribution must not be known

precisely but can be off by about 20 to 30%. Furthermore, better results could be achieved than shown in Table

2 and S2 when overestimating the actual distribution by 10%.

Object shape: We investigated the effect of the shape of the neurons in the synthetic dataset on the mean

absolute error. We described the shape of the objects by a superellipse:∣∣∣x
a

∣∣∣n +
∣∣∣y
b

∣∣∣n ≤ 1, (S21)

where a and b are the semi-major and semi-minor axis of the superellipse and n defines the shape. For example,

for n = 1 the superellipse is a parallelogram, for n = 2 it is an ellipse and for n = ∞ a rectangle. We scaled a

and b in order to guarantee that the area of the superellipses does not depend on n. In the next paragraph we

will investigate the effect of different object sizes.

Video S3 shows how the generated images compare during training for different values of n. The absolute

mean error of the neuron counts are given in Fig.S13. One can see that UDCT first creates elliptical patterns

independent of the value of n, before mapping the respective shapes. We suspect this is due to the fact that
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Figure S10: Neuron densities used for benchmarking: The point mass functions for the dead (top) and

live(bottom) neurons is plotted for different parameters of α. The parameter α describes by how much the

expected value of the sum of the two Poisson distributions has been scaled in the synthetic data with respect

to the actual distribution. The latter is plotted in white.

ellipsoids are easier to create with neuronal networks than star-like shapes and because neurons have similar

shapes. The relationship between shape and count loss is not obvious. The high fluctuations in the plot are

likely due to the post processing.

Object size: We observed the effect of changing the size distribution of objects in the synthetic dataset with

respect to the object sizes in the genuine data. We scaled the area of an object by a factor of 0.5 two 2. Video

S4 shows the generated images during the training period for different size objects. The effect of the size on

the mean absolute error count is shown in Fig.S12. The closer the object sizes match, the better the loss is in

general. However, if the distributions are off by less than 20%, this effect appears to be negligible.
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Figure S11: Effect of object density on mean absolute error: The mean absolute count error is plotted

for each image for the dead and live neurons with respect of the parameter α, which describes by how much the

expected value of the sum of the two Poisson distributions has been scaled in the synthetic data with respect

to the actual distribution. The point mass functions of the different distributions are given in Fig.S10.

Figure S12: Effect of object size on mean absolute error: The mean absolute count error is plotted for

each image for the dead and live neurons with respect of the normalized mean size of the synthetic neurons.
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